Estudio de la electro-oxidación de glicerol crudo con nanopartículas basadas en Pd/C, PdAu/C y Au/C sintetizados con líquidos iónicos

<u>I. Velázquez-Hernández</u>, V. Lair, L. Álvarez-Contreras, M. Guerra-Balcázar, y N. Arjona

ParisTech

Contacto e información:

* <u>noe.arjona@yahoo.com.mx</u> & <u>wvelazquez@cideteq.mx</u>

(CIDETEQ, Querétaro)

Cuitláhuac, Veracruz. Marzo 2018

Antecedentes

Combustibles fósiles

C. a G. Quispe, C.J.R. Coronado, J. a. Carvalho, Renew. Sustain. Energy Rev. 27 (2013) 475–493.

Producción de biodiesel

A.B. Leoneti, V. Aragão-Leoneti, S.V.W.B. de Oliveira, Renew. Energy. 45 (2012) 138–145.

Glicerol crudo

C. a G. Quispe, C.J.R. Coronado, J. a. Carvalho, Renew. Sustain. Energy Rev. 27 (2013) 475–493.

Glicerol como combustible

Glicerol:

- Densidad de energía teórica de 5965 Wh L⁻¹.
- Voltaje de celda de 1.21 V.
- Menos volátil y tóxico que el metanol.
- Alta disponibilidad.
- Bajo costo.
- Molécula altamente funcionalizada.

Energy Conversion and Management 99 (2015) 132–140 Electrochemistry Communications 8 (2006) 1340–1348

E.H. Yu, U. Krewer, K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells, Energies. 3 (2010) 1499–1528. doi:10.3390/en3081499.

Modificación de la actividad electrocatalítica

Características morfológicas

Características electrónicas

Nature Chemistry, (2009), 1, 552 - 556

Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Angewandte Chemie International Edition 48: 60.

Problemáticas asociadas con la reacciones de electro-oxidación de glicerol

Figura 1. Posibles vías de la oxidación de glicerol

 La reacción de electro-oxidación de glicerol crudo será mejorada en materiales de PdAu debido al efecto combinado de ambos metales, siendo mas selectivos a oxidar al glicerol que el metanol en el glicerol crudo.

Objetivo

Estudiar el efecto de nanopartículas de Pd/C, PdAu/C y Au/C en la electrooxidación de glicerol crudo.

Síntesis de los electrocatalizadores

Figura 1. Esquema de síntesis

- Ion de tetraalquilamonio como estabilizador
- Grupo hidroxilo en el catión actúa como estabilizador y agente reductor
- Ion formato actúa como agente reductor.

C.A. López-Rico, et Al. , Electrochim. Acta. 207 (2016) 164–176. doi:10.1016/j.electacta.2016.05.002.

- KOH 0.3 M (86%, Macron[™] Fine Chemicals).
- Carbón vítreo (SPI Instruments, 1.56 cm²).
- Electrodo de Ag/AgCl.
- Barra de grafito.
- Glicerol (99.7%, BDH®)
- N₂ (99.999%, Infra)
- Velocidad de barrido de 20 mV s⁻¹ por 10 ciclos.

Figura 2. Celda electroquímica

c i d e t e q

Síntesis y caracterización de glicerol crudo

La producción de biodiesel genera una gran cantidad de glicerol como subproducto (10% w/w).

Figura 3. Esquema de síntesis de biodiesel

A. Hajinezhad, S. Abedi, B. Ghobadian, Y. Noorollahi, Energy Convers. Manag. 99 (2015) 132–140.

c i d e t e q

Caracterización del glicerol crudo por Raman

Espectroscopia Raman:

- Micro Raman HORIBA XploRA
- Microscopio Olympus BX41
- Detector: CCD
- > Objetivo: 10X
- Laser: 785nm
- ➢ Rejilla holográfica: 1200 gr. mm⁻¹
- ➢ Anchura de la hendidura: 100 µm
- ➢ Agujero confocal: 300 µm
- Resolución: 2 cm⁻¹
- Software LabSpec6 ®

Síntesis y caracterización de glicerol crudo

Tabla 1. Síntesis de glicerol crudo

Síntesis	Aceite	Metanol	КОН	Biodiesel	Glicerol crudo	Relación: biodiesel /
	(g)	(mL)	(g)	(mL)	(mL)	glicerol
1	219.899	219	2.19899	240	205	1.17
2	241.331	241	2.41331	255	210	1.21
3	229.592	229	2.29592	255	205	1.24
4	238.11	238	2.3811	265	215	1.23
					Promedio	1.212
					Desviación estándar	0.026

Figura 4. Glicerol crudo y espectro Raman del glicerol crudo a λ785 nm

Caracterización fisicoquímica

Figura 6. Termograma de los catalizadores

Caracterización morfológica

TEM

Figura 7. Imágenes TEM de los catalizadores

Material	Tamaño de partícula/ nm
Pd/C	22
Au/C	30
PdAu/C	16

Figura 8. Perfiles electroquímicos en KOH 0.3M, velocidad de barrido de 50 mV s⁻¹

Electro-oxidación de glicerol analítico

Figura 9. Evaluación electrocatalítica de glicerol analítico en KOH 0.3M, velocidad de barrido de 20 mV s⁻¹

Electro-oxidación de metanol analítico

Figura 10. Evaluación electrocatalítica de metanol analítico en KOH 0.3M, velocidad de barrido de 20 mV s⁻¹

Electro-oxidación de glicerol crudo

Figura 11. Evaluación electrocatalítica de glicerol crudo en KOH 0.3M, velocidad de barrido de 20 mV s⁻¹

CONCLUSIONES

 Se sintetizó biodiesel y glicerol crudo por medio de una reacción de transesterificación en medio alcalino con temperatura y agitación. El glicerol crudo fue caracterizado por espectroscopia Raman mostrando las señales características de un glicerol analítico y sus componentes.

 Se sintetizaron nanopartículas de Pd/C, Au/C y PdAu/C con tamaños de 16 a 30 nm con forma semiesférica a través de un método de reducción química con un líquido iónico "todo en uno".

 El PdAu/C mostró una mayor densidad de corriente (55 mA mg⁻¹) en el glicerol analítico comparado con los metales individuales, sin embargo, en el glicerol crudo el PdAu/C presentó dos señales de oxidación que pueden ser debido a un efecto combinado de los metales con el glicerol crudo (glicerol y metanol).

$C_{i d e t e q}$

Agradecimientos

^q Los autores externan su gratitud al CONACYT por el apoyo financiero otorgado para el desarrollo de esta investigación. CONACyT SENER-Sustentabilidad Energética- INNOVATE UK Grant no. 269546. Agradecimientos a los laboratorios de otras instituciones que contribuyen con CIMAV NANOTECH, LABMyN

Por favor visite:

www.cideteq.mx

www.seqe.mx

Para facilidades de cuartos limpios y colaboraciones contactar con: <u>wvelazquez@cideteq.mx</u> <u>minbalca@yahoo.com.mx</u> larriaga@cideteq.mx

