


# Caracterización de Polvos de SnS<sub>2</sub> Crecidos por Precipitación Ouímica\*

**J. V. Ocampo-Rosas,**¹,↑ J. M. Gracia-Jiménez,²,+ M. E. Hernández-Torres,¹ N. R. Silva-González,² 1. Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, México 2. Instituto de Física, Benemérita Universidad Autónoma de Puebla, México



# INTRODUCCIÓN

El SnS<sub>2</sub> se ha convertido en un material de gran importancia pues su producción no genera residuos nocivos para la salud humana. Además, tiene una Eg dentro del intervalo 2.22 a 2.40 eV que le permite participar y mejorar procesos como la fotocatálisis, etc [1,2]. En este trabajo se crecieron polvos de SnS<sub>2</sub> partiendo de soluciones acuosas de SnC<sub>14</sub>:5H<sub>2</sub>O y CH<sub>3</sub>CSNH<sub>2</sub>, en un medio ácido por precipitación química [3] a temperaturas de 25, 40, 60 y 80 °C. Se mantuvieron el resto de los parámetros de crecimiento constantes, posteriormente los polvos se sometieron a tratamientos térmicos consecutivos de 100 y 200 °C en aire y vacío, respectivamente. El material fué caracterizado mediante las técnicas de reflectancia difusa, FIR, SEM, EDS, y se realizó la fotodegradación de azul de metileno (AM) con luz visible para determinar la capacidad del SnS<sub>2</sub> como fotocatalizador

## **ABSORBANCIA**

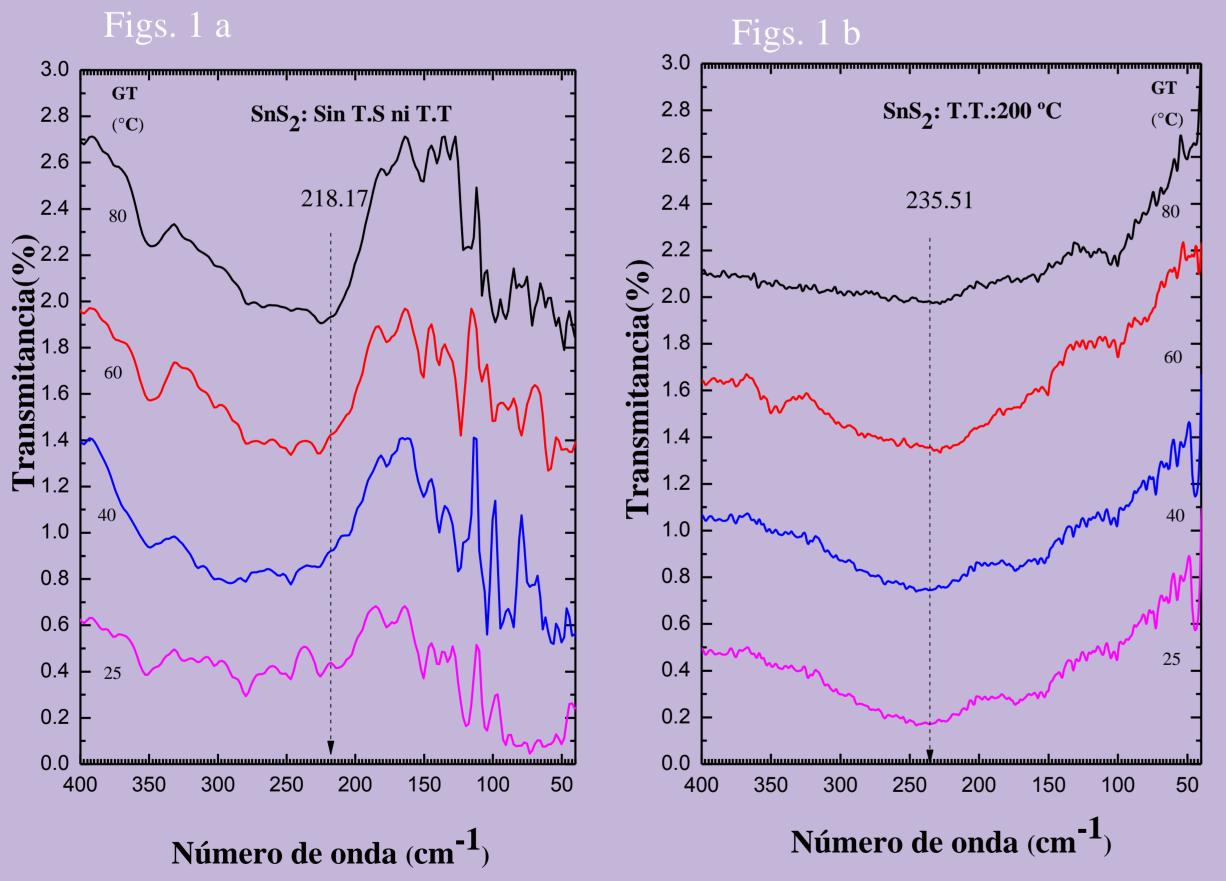

Para determinar el efecto de la temperatura de crecimiento (TC) y de los tratamientos sobre la Eg de los polvos, se realizaron experimentos de reflectancia difusa. En la tabla 1 se dan los valores de Eg, estos se encuentran en buena correspondencia con los reportados para el material en bulto [4]. En general, se observa un corrimiento hacia baja energía al incrementar la temperatura de crecimiento y al aplicar el tratamiento térmico.

Tabla 1: Eg del SnS<sub>2</sub> de las muestras sometidas a los T.T.

| T. C. | Eg    | T. T. | Eg    | T. T. | Eg    |
|-------|-------|-------|-------|-------|-------|
| (°C)  | (eV)  | (°C)  | (eV)  | (°C)  | (eV)  |
| 25    | 2.534 | 100   | 2.244 | 200   | 2.126 |
| 40    | 2.523 | 100   | 2.141 | 200   | 2.036 |
| 60    | 2.410 | 100   | 2.234 | 200   | 2.227 |
| 80    | 2.380 | 100   | 2.316 | 200   | 2.251 |

#### FIR

Las muestras se analizaron en el infrarrojo lejano para comprobar que en el material no existieran óxidos como el SO<sub>2</sub> u otras especies. Los espectros muestran (Figs. 1 a y b) que al aplicar los tratamientos térmicos se eliminan la mayoría de las líneas asociadas a los precursores. No se nota ningún pico que sea significativo por lo que no existen compuestos que sean ajenos a la reacción esperada



#### EDS

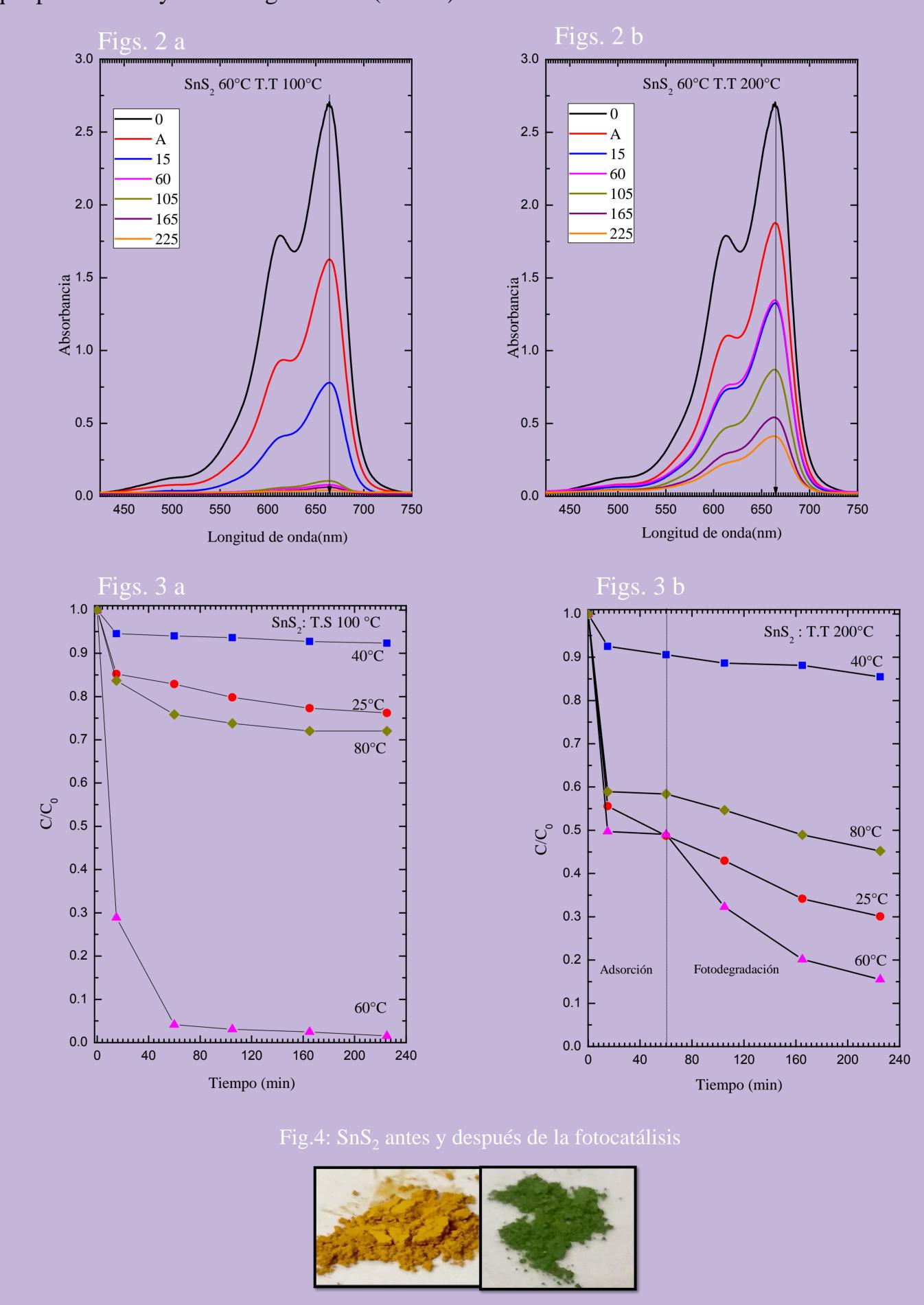

La composición de los polvos están en buena correspondencia con la región considerada como estequiométrica [5]. Al incrementar la temperatura de crecimiento se observa reducción del S, lo cual puede explicarse considerando que el S tiene un mayor punto de ebullicion [6] y por lo tanto se sublima parcialmente.

Tabla 2: Resultados de caracterización EDS de las muestras.

| T. C. | S/Sn  | T. T. | S/Sn | T. T. | S/Sn |
|-------|-------|-------|------|-------|------|
| (°C)  |       | (°C)  |      | (°C)  |      |
| 25    | 2.534 | 100   | 2.21 | 200   | 2.06 |
| 40    | 2.523 | 100   | 2.75 | 200   | 2.02 |
| 60    | 2.410 | 100   | 1.95 | 200   | 1.94 |
| 80    | 2.380 | 100   | 1.94 | 200   | 1.85 |

# FOTODEGRADACIÓN

Los espectros de absorbancia (Figs. 2 a y b) y la intensidad normalizada (C/C<sub>0</sub>) de la línea principal (Figs. 3 a y b) de la solución de AM sometida a fotodegradación muestran, de principio, que el polvo con mayor degradación es el crecido a 60 °C tratado a 100 y 200 °C, la cual es cercana al 100 %. Sin embargo, se observo que al finalizar el tiempo de fotodegradación los polvos cambiaban de color amarillo a verde (Fig. 4), lo cual es un indicio de que además de la fotodegradación ocurrió adsorción del AM en las muestras. Entonces, esto indica que ocurren ambos procesos y por lo tanto la primera afirmación no es correcta, es decir, durante la fotodegradación se observa el equilibrio de adsorción/desorción seguido de un aumento en la degradación [7, 8]. Considerando que la fotodegradación ocurre a partir del punto donde la adsorción se mantiene constante (Fig. 3b), la muestra crecida a 60 y con ambos tratamientos es la que presenta mayor fotodegradación (68.8%).



## CONCLUSIONES

De acuerdo con los resultados obtenidos se observo que los polvos presentan dos comportamientos, a saber adsorción y fotodegradación, los cuales dependen del tiempo y preparación del material. Finalmente, la muestra crecida a 60 y con ambos tratamientos presenta la mayor fotodegradación.

## REFERENCIAS

- 1. Y. C. Zhang, et al, Appl. Catal. B 95, 153 (2010).
- 2. X. Chen, et al, *Chem. Rev.* **107**, 2891 (2007).
- 3. J.F. Izquierdo, Cinética de las reacciones químicas, Catálisis heterogénea (2004)
- 4. D.L Greennaway, et al, J. Phys. Chem. Solids 26, 1445 (1965).
- 5. B. Palosz, *Acta Cryst.* **46**, 449 (1990)
- 6. H. Tubota, Jap. J. Appl. Phys. 2, 259 (1963).
- 7. S. Wang, et al, Journal of Colloid and Interface Science 507, 225 (2017)
- 8. X.Cui, et al, Dalton Trans, The Royal Society of Chemistry, 1 (2016)

\*Agradecimientos: VIEP-BUAP (GRJJ-EXC17-I), LAB. CENTRAL-IFUAP, C.A. Materiales Fotoactivos — BUAP.

†Becaria de investigación — VIEP(GRJJ-EXC17-I), † Autor responsable : jv-ocampo@hotmail.com