

Congreso Internacional de Mantenimiento Industrial

SEV ESTADO DE VERACRUZ VER Educación

Pirocloros de Zirconato de tierras raras $A_2Zr_2O_7$ (A^{3+} = Nd, Sm, Pr y Er) utilizados como posibles candidatos para el rendimiento termoeléctrico y para aplicaciones de alta temperatura

QUIROZ RODRÍGUEZ ADOLFO, GALINDO MENTLE MARGARITA, ORTEGA PATRICIO JAVIER, SANDOVAL HERNÁNDEZ MARCO ANTONIO, BONILLA JIMÉNEZ LUIS ANTONIO

OBJETIVOS

- Síntesis de los compuestos tipo pirocloro con estructura A₂Zr₂O₇
- Descripción del método de síntesis de reacción en estado sólido
- Caracaterización de los compuestos con estructura tipo pirocloro con estructura A₂Zr₂O₇ mediante Análisis térmogravimetricos diferencial (TGA), Difracción de Rayos-X (DRX), y Espectroscopia de Rayos-X por dispersión de energía (EDS).

APLICACIONES

Figura. 1. Turbina de gas

Figura. 2 Recubrimeintos usando pinturas

Figura. 3 Recubrimeintos métalicos

DESCRIPCIÓN EXPERIMENTAL DE LA RUTA SOLIDA

- Método de reacción en estado solido: Éste involucra la reacción de los componentes sólidos en las proporciones molares correctas, que reaccionan a elevadas temperaturas durante periodos largos.
- Las muestras fueron preparadas por el método de reacción en estado sólido a presión atmosférica a altas temperaturas entre 1200 y 1400 °C, durante 4 días y 7 h.
- $Pr_2O_3 + 2ZrO_2 \rightarrow Pr_2Zr_2O_7$

MÉTODO DE REACCIÓN EN ESTADO SÓLIDO

Balanza electrónica Marca Velab.

Mortero de Ágata.

Pastillador ICL.

Mufla tubular Carbolite.

Pastillas de los compuestos tipo pirocloro

Prensa Hidráulica tipo H Marca truper.

PIROCLORATOS DE ZIRCONIO FINALMENTE SINTETIZADOS

Figura. 4. Pirocloratos de Zirconio con estructura A₂B₂O₇

ESTRUCTURA CRISTALINA TIPO PIROCLORO A₂B₂O₇

Figura. 5 Estructura cristalina tipo pirocloro $A_2B_2O_7$

ANÁLISIS TERMOGRAVIMÉTRICO

Figura 6. Curvas térmicas diferenciales de los compuestos $Er_2Zr_2O_7$, $Nd_2Zr_2O_7$, $Pr_2Zr_2O_7$ y $Sm_2Zr_2O_7$

CARACTERIZACIÓN DE DIFRACCIÓN DE RAYOS-X

Figura. 7 Patrones de DRX de los compuestos $Er_2Zr_2O_7$, $Nd_2Zr_2O_7$, $Pr_2Zr_2O_7$ y $Sm_2Zr_2O_7$.

ESPECTROSCOPIA DE RAYOS-X POR DISPERSIÓN DE ENERGÍA

300um

Electron Image 1

Figura .8 Imagen obtenida en XEDS de la muestra $Nd_2Zr_2O_7$, $Sm_2Zr_2O_7$, $y Pr_2Zr_2O_7$.

CONCLUSIÓN

- En este trabajo, se sintetizaron los compuestos Nd₂Zr₂O₇, Sm₂Zr₂O₇, Pr₂Zr₂O₇ y Er₂Zr₂O₇ mediante el método de reacción en estado sólido. La estructura policristalina de los compuestos y el producto final, se determinaron mediante difracción de rayos-X en polvo. Las micrografías SEM muestran el efecto de los tratamientos térmicos y la ruta de procesamiento en la morfología de grano de los compuestos.
- Finalmente, realizamos un análisis EDX en todas las muestras para verificar la composición química. Los resultados obtenidos se encuentran en el rango de error del análisis está entre 1 y 6% en peso.