OBTENCIÓN DE NANOPARTICULAS DE MAGNETITA POR SÍNTESIS VERDE

<u>E. Aguirre¹</u>*, R. A. Vázquez¹, J.A. Arenas-Alatorre², E. Salinas-Rodríguez ¹, V. Rodríguez-Lugo¹*

¹ Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, 42184, Mineral de la Reforma, Hidalgo, México.

eduardo.aguirre.mnz@gmail.com, rosaangelesv@hotmail.com, ventura.rl65@gmail.com, esalinas1994nov@hotmail.com

² Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, CP. 04510, México, D.F. arenasalatorre@gmail.com

RESUMEN

Las nanopartículas de magnetita han sido objeto de estudio e investigación debido a sus propiedades magnéticas, la cual las hace viables para aplicaciones en medicina ^[1]. Recientemente, se han desarrollado métodos de síntesis utilizando plantas y microorganismos los cuales han permitido la formación de nanopartículas metálicas de una manera ecológica, amigable y menos costosa, las cuales no utilizan agentes tóxicos en el proceso de síntesis ^[2]. En el presente trabajo se reporta la biosíntesis de nanopartículas de magnetita utilizando extracto de semillas de *Theobroma cacao L*. como agente reductor de las sales precursoras FeCl₂ 4H₂O y FeCl₃6H₂O. La caracterización se llevó a cabo mediante Microscopía electrónica de Transmisión (MET), difracción de Rayos-X (DRX) y Espectroscopía infrarroja por transformada de Fourier (FT-IR). Se obtuvieron NPs de magnetita de tamaños de 5 a 20 nm. El difractograma mostró los picos característicos de la magnetita, donde la fase identificada fue Fe₃O₄

PALABRAS CLAVE

Nanopartículas, Síntesis verdes, Magnetita

REFERENCIAS

- [1] Raveendran, P., J. Fu, and S.L. Wallen, *Completely "Green" Synthesis and Stabilization of Metal Nanoparticles*. Journal of the American Chemical Society, 2003. **125**(46): p. 13940-13941.
- [2] Iravani, S., Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011. 13(10): p. 2638-2650.