

SÍNTESIS NOVEDOSA DEL (6*E*)-6-HIDROXIIMINO-COLEST-4-EN-3-ONA, UN METABOLITO CON ACTIVIDAD ANTIPROLIFERITVA.

Martínez Pascual Roxana, 1* Montiel Smith Sara. 2

¹Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, Oaxaca, 68301, México

I. INTRODUCCIÓN

Los productos naturales encontrados en organismos marinos han sido una fuente importante de metabolitos secundarios biológicamente activos. De esponjas marinas se aislaron las oximas esteroidales 1 y 2 (Figura 1). Este tipo de metabolitos llamaron la atención porque 1 se reportó como citotóxico contra líneas celulares de leucemia (P-388), cáncer de pulmón (A-549), colorrectal (H-29) y mieloma (MEL-28). Más adelante, se reportó el aislamiento de 3 el cual fue reportado como antiviral contra la hepatitis. En este proyecto se describe una ruta alternativa para obtener 1 que tiene la ventaja de llevarse a acabo en tiempos más cortos de reacción y empleando reacciones más selectivas con respecto a la ruta más corta reportada en la literatura.

II. MATERIALES Y MÉTODOS

Para la síntesis de **1**, primero se empleó un novedoso protocolo para introducir un grupo acetoxima en el carbono 6 del colesterol (**4**) formándose el compuesto **8** (**Esquema 1**). Luego de ello, se realizó una hidrólisis usando NaOMe en MeOH-CH₂Cl₂ a reflujo obteniéndose el derivado 3-hidroxi-5-metoxi-6-hidroximino **9**. Por último, se efectuó una oxidación con PCC sobre **9** y subsecuente eliminación del grupo metoxi del C-5 usando *p*-TsOH lo que condujo al producto final (**1**).

i) NaNO₂, BF₃·OEt₂, AcOH, Ac₂O ii) NaOMe, MeOH-CH₂Cl₂, reflujo ii) PCC, CaCO₃, CH₂Cl₂ iii) TsOH, EtOH-CH₂Cl₂, reflujo

Esquema 1

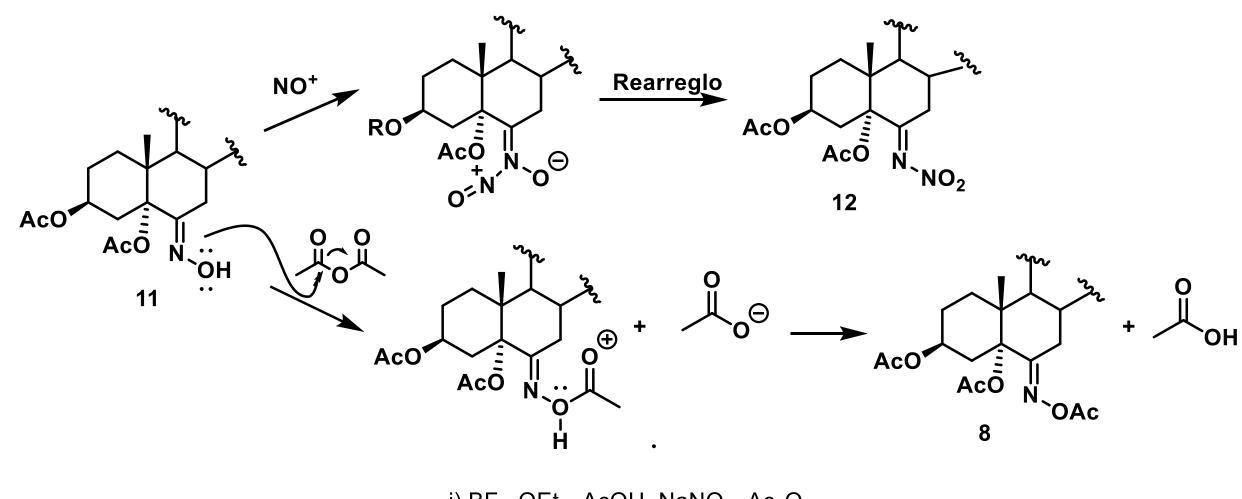
Referencias

. J. Rodríguez, L. Nuñez, S. Peixinho, C. Jiménez, Isolation and synthesis of the first natural 6-hydroximino 4-en-3-one- steroids from the sponges Cinachyrella spp., Tetrahedron Lett. 38 (1997) 1833-1836.

D. J. Xiao, X. D. Peng, S. Z. Deng, W. J. Ma, H. M. Wu, Structure elucidation of (3*E*)-colest-4-en-3,6-dione-3-oxime in marine sponge

Cinachyrella australiensis from the south China sea, Chin. J. of Org. Chem. 25 (2005) 1606-1609.

. J. G. Cui, L. Fan, L. L. Huang, H. L. Liu, A. M. Zhou, Synthesis and evaluation of some steroidal oximes as cytotoxic agents: Structure/activity studies (I), Steroids 74 (2009) 62-72.


. Y. López, K. M. Ruíz-Pérez, R. Yépez, R. Santillán, M. Flores-Álamo, M. A. Iglesias-Arteaga, Mechanistic insights and new products of the reaction of steroids sapogenins with NaNO₂ and BF₃·Et₂O in acetic acid, *Steroids* 73 (2008) 657-668.

Agradecimientos

Agradecimientos: Al Dr. Angel Mendoza por la realización de la difracción de RX, al CONACYT por la beca nacional a RMP y por los fondos del proyecto 240329 de SMS

III. DISCUSIÓN DE RESULTADOS

La transformación del colesterol (4) en 3β,5α-diacetoxi-6-acetoximino (8) se logró efectuando una modificación de la reacción de nitrosación del colesterol reportada por Iglesias y colaboradores. En este protocolo se utilizó la mezcla de NaNO₂, BF₃·OEt₂ y AcOH para obtener un derivado 6-nitroimino (12) (Esquema 2), cutya formación se explicó a través de formación de una oxima intermediaria en el C-6 (11). Deducimos que para atrapar la oxima transitoria podíamos agregar Ac₂O al medio de reacción generando el derivado 8. La hipótesis fue correcta ya que al usar NaNO₂, BF₃·OEt₂ en una mezcla AcOH/Ac₂O se pudo sintetizar 8 en 65% de rendimiento. Una vez introducido el grupo acetoxima en el C-6, se continuó con la metodología anteriormente descrita hasta el producto final 1.

i) BF₃ OEt₂, AcOH, NaNO₂, Ac₂O

Esquema 2

En la Tabla **1** se muestran los datos más relevantes de los desplazamientos químicos de ¹H y ¹³C de los productos y los intermediarios de reacción. Del compuesto **8** destacan las tres señales alrededor de 170 ppm correspondientes a los tres carbonilos de éster que contiene la molécula y en 165.8 ppm la señal asignada al C=N. Del compuesto **9** sobresale una señal simple que integra para tres protones en 3.0 ppm y la señal en 160.1 ppm característica de del C=N. Se observó la desprotección de la señal del protón del C-3 en comparación de la materia prima (4.85 ppm vs. 3.80 ppm) debido al cambio en el sustituyente de C-3. Del compuesto **10** sobresale la señal de 213.8 ppm característica del carbonilo de cetona. Del producto, compuesto **1**, destaca el pico en 201.4 ppm, propio de carbonilo α,β-insaturado.

Tabla 1. Desplazamientos químicos δ (ppm) seleccionados para intermediarios y producto								
	¹ H			¹³ C				
	H-3	Η-4α	Η-7β	C-6	C=O (éster)	C-3	C-5	C-4
8	4.85	2.68	3.10	165.8	170.4, 169.6, 169.2	69.5.	86.0	29.7
9	3.80	2.25	3.11	160.1	-	67.2	82.1	31.3
10	-	3.16	3.20	157.7	-	213.8	84.3	40.4
1	-	6.48	3.42	162.5	-	201.4	162.6	6.48

Se obtuvo satisfactoriamente un cristal idóneo para realizar una difracción de rayos X del producto final con lo cual se corroboró la estructura propuesta (**Fig. 2**)

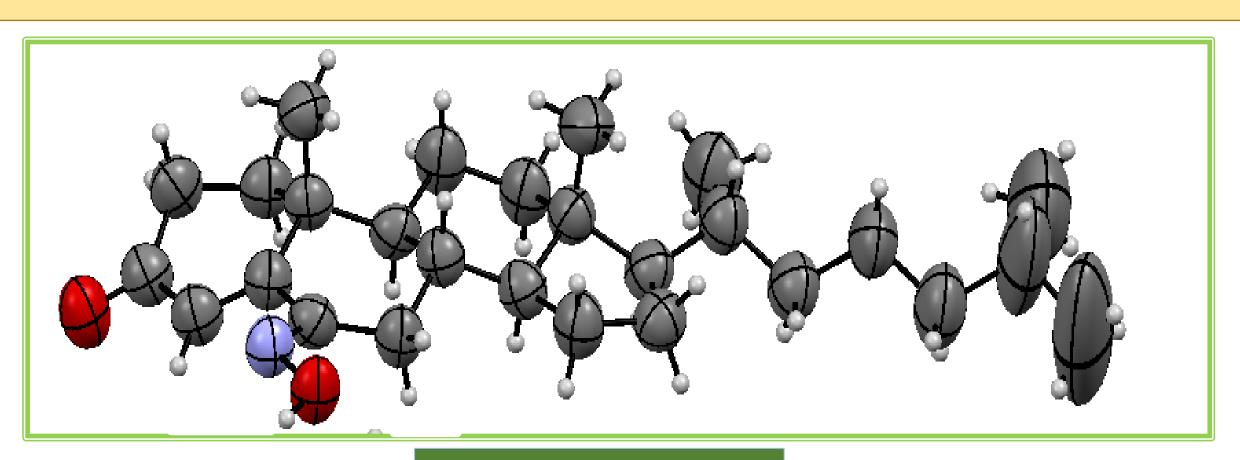


Fig. 2

IV. CONCLUSIONES

Se diseño una ruta novedosa para la obtención de (6E)-6-hidroximinocolest-4-en-3-ona utilizando un nuevo protocolo para introducir el grupo hidroximino en la posición 6 de forma selectiva. Esta secuencia disminuye los tiempos y los subproductos de reacción en cada paso.